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Binless strategies for estimation of information from neural data

Jonathan D. Victor*
Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 1300 York Avenue, New York, New Yor

~Received 5 November 2001; revised manuscript received 6 August 2002; published 11 November 2002!

We present an approach to estimate information carried by experimentally observed neural spike trains
elicited by known stimuli. This approach makes use of an embedding of the observed spike trains into a set of
vector spaces, and entropy estimates based on the nearest-neighbor Euclidean distances within these vector
spaces@L. F. Kozachenko and N. N. Leonenko, Probl. Peredachi Inf.23, 9 ~1987!#. Using numerical examples,
we show that this approach can be dramatically more efficient than standard bin-based approaches such as the
‘‘direct’’ method @S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek, Phys. Rev. Lett.80,
197 ~1998!# for amounts of data typically available from laboratory experiments.
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INTRODUCTION

How neurons represent, process, and transmit informa
is of fundamental interest in neuroscience@1,2#. It is ac-
cepted that neural information processing relies on the tra
mission of a series of stereotyped events. The basic biop
ics that underlies the generation of these action poten
~spikes! is well established. However, the statistical featu
that convey information are not well understood. Possib
ties include not only obvious features, such as the numbe
spikes fired by a population of neurons@3#, but also more
subtle ones, such as, their precise times of occurrence@4,5#,
the pattern of intervals@6#, and various kinds of patterns o
activity across a population@7,8#. A direct experimental as
sault on this question is difficult, since manipulations~such
as chemical or electrical stimulation! that change one aspe
of neural activity are likely to change others. Thus, an app
priate theoretical infrastructure is required to disentan
such potential confounds.

Shannon’s groundbreaking work in information and co
munication theory@9# is the natural basis for this theoretic
infrastructure@1#. Quantifying the amount of information
contained in neural activity, often in conjunction with appr
priate simulations and models, makes it possible to de
mine the relevant statistical features of spike trains@10# and
to examine overall biological strategies for informatio
transfer@11#.

However, as is becoming increasingly appreciated, e
mation of information content from empirical data can
fraught with difficulties. Estimation of information in spik
trains generally consists of several steps:~i! embedding spike
trains into a space,~ii ! clustering similar spike trains into
groups,~iii ! using a ‘‘plug-in’’ estimate for transmitted infor
mation based on how these groups relate to the stimuli,
~iv! estimating biases due to small sample size. Traditio
approaches~e.g., the ‘‘direct’’ method of Stronget al. @12#!
subdivide a spike train into narrow time bins~binning! as
part of the embedding stage~i!, with each bin corresponding
to a separate dimension. Bins that are too wide lead to
derestimates of information since temporal detail is lo
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while bins that are too narrow lead to biases associated
extreme undersampling. Standard@13–15# and jackknife es-
timators@16# of bias at stage~iv! can be helpful, but no bias
correction is effective when the amount of data is very li
ited. Metric-space methods@17# avoid the binning problem,
but still may underestimate information due to the cluster
at stage~ii !. The fundamental difficulty is that estimates
information that make few assumptions concerning the
ture of the code suffer biases because of limited amount
data, while methods that reduce the dimensionality of
problem by considering a parametric family of codes suf
biases if the neural code does not belong to one of the fa
lies.

This paper presents a strategy that bypasses the diffi
ties associated with binning and clustering, while maki
only weak assumptions concerning the nature of the co
Essentially, we assume that the neural code respects the
tinuity of time, but we make no assumptions as to the re
tionships between spike trains with different numbers
spikes. That is, we recognize the distinctive topology of
space of spike trains: there is a discrete component, co
sponding to the number of spikes in a response, and the
a continuous component, corresponding to the timing
those spikes@18#.

Implementation of the idea rests on a little-known asym
totically unbiased ‘‘binless’’ estimator of differential entrop
@19#. We first show that this estimator has substantial co
putational advantages in a broader context: estimation of
entropy of a continuous distribution from a finite set of em
pirical samples in a Euclidean space. We then proceed
apply this estimator to spike trains. This requires grouping
the spike trains into strata according to the number of spi
that they contain, followed by separate analysis of each s
tum. To preserve the advantages of the binless estim
within each stratum, we use linear, continuous embeddi
of spike trains, rather than embeddings based on binn
Information is then estimated from the difference betwe
the entropy of the set of all spike trains, and the entropies
the spike trains elicited by each stimulus. In simulations,
rapid convergence of the binless entropy estimator lead
marked improvements in information estimates in the regi
of limited data.
©2002 The American Physical Society03-1
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JONATHAN D. VICTOR PHYSICAL REVIEW E66, 051903 ~2002!
RESULTS

Statement of the problem and overview of the approach

We focus on estimating the amount of information tran
mitted by a neuron in a particular but common neurophy
ologic laboratory situation. Each member of discrete coll
tion of stimuli ak (k51,2,...,S) is presented repeatedly to th
preparation. The neural response elicited by each stim
presentation is a ‘‘spike train,’’ namely, a sequence of ster
typed events~spikes! in a predefined observation period fo
lowing the presentation of the stimulus. In a typical expe
ment, the observation period following each presentatio
on the order of 0.1–1 s, the number of spikes may ra
from 0 to 20, the number of stimuliS is 2–12, and each
stimulus is presented several dozen times. The investig
keeps track of which stimulus elicits which responses,
would like to determine the extent to which the respon
themselves allow the stimuli to be distinguished.

As pointed out above, estimation of Shannon’s ‘‘transm
ted information’’@1,9# is natural for this purpose. In essenc
the transmitted information is the difference between the
tropy of all of the spike trains, and the entropy of the sp
trains elicited by repeated presentations of the same stimu
Thus, estimating transmitted information is closely related
estimating entropy.

Were a neural response fully characterized by the num
of spikes it contained@20#, it would suffice to describe an
ensemble of spike trains in a discrete fashion. This desc
tion would be a tabulation of the list of the probabilities th
given a stimulusak , a response containing exactlyn spikes
is elicited. In this case, procedures for obtaining entropy
timates from discrete distributions could be applied. Su
procedures are well known, and their behavior, includ
their biases, are well understood@13–15#.

However, it does not suffice to characterize a spike tr
merely by the number of spikes that it contains, since
timing of the spikes in the response may also contrib
to the ability to discriminate among the several stim
@1,2,4,6–8,17,21,22#. The usual and currently standard a
proach is to break up the observation interval into a num
of discrete time bins@12#. Once this is done, procedures f
obtaining entropy estimates from a discrete distribution
again be applied. The fundamental difficulty with this a
proach is that the bins must be made small enough to cap
the intrinsic precision of spike times, which may be as fine
1 ms@22,23#. This requires estimation of a very large numb
of response probabilities~one for each possible way to dis
tribute then response spikes into these bins!. This in turn
incurs a large bias in the entropy estimates: bias is appr
mately proportional to the number of response probabili
to be estimated@13–15#, and the latter increases expone
tially with the time resolution used to analyze the respons
Since the estimated information is a difference between
estimated entropies, and the biases of these entropy estim
are large and unequal, large biases in estimated informa
can result.

The present approach avoids this exponential growth
bias with increasing time resolution. The transmitted inf
mation is broken into two parts: one (I count) that can be
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gleaned from the number of spikes in each response
another (I timing) that can be gleaned from their timing.I count

is estimated via standard methods. While the estimate
I count must be debiased, the bias is small and independen
time resolution.I timing is further subdivided into contribu
tions I timing(n) from responses that contain exactlyn spikes,
a step that incurs no estimation error. To estimateI timing(n),
we exploit the fact that spike trains that contain exactlyn
spikes are parametrized byn continuous parameters~namely,
the times of the spikes!. Thus, it is natural to consider est
mation of their entropies within the context of estimation
entropies of continuous probability distributions on a Eucl
ean vector space. This additional structure provides a
that avoids the difficulties associated with binning. As sho
by Kozachenko and Leonenko@19#, for a finite sample
drawn from a continuous distribution in a Euclidean vec
space, the statistics of the Euclidean distances between
est neighbors provide for an asymptotically unbiased a
consistent estimate of the entropy.

To implement this approach, and to show that it inde
has practical advantages, requires a number of logical st
We begin by introducing the binless entropy estimator
Kozachenko and Leonenko@19# for continuous distributions
in a Euclidean space, for one-dimensional distributions,
then for multidimensional ones. We next show~via numeri-
cal experiments! that this estimator indeed has practical a
vantages over the traditional estimators that rely on binni
We then describe how the binless estimator can be adapte
the estimation of information in neural data sets of the s
described above. This requires several steps:~a! stratification
of spike trains into discrete sets based on how many sp
they contain,~b! estimation of the informationI count associ-
ated with step~a!, ~c! embedding the spike trains within eac
of these discrete sets into a separate Euclidean space, an~d!
application of the binless estimator within each of the E
clidean spaces to obtain contributions toI timing .

The results of Kozachenko and Leonenko@19#, along with
the chain rule property of information@24#, guarantee that, in
the limit of an infinite amount of data, the proposed proc
dure provides an unbiased estimate of information. With li
ited data acquired at finite resolution, there are pract
problems that arise in the implementation of stages~b!, ~c!,
and ~d!. We make generic choices for how to solve them
the course of the development below. We make no claim
these choices are optimal, and we mention several variat
in the Discussion and Appendix. Nevertheless, as a variet
numerical simulations demonstrate, these choices result
procedure that has substantial advantages in compariso
traditional binned approaches, for data sets whose size
nature are typical of those obtained in the neurophysiolo
laboratory.

Finally, we note that this approach can also be applied
experimental data that consist of continuous responses~e.g.,
field potentials! rather than spike trains, and also to situatio
in which the stimulus set is continuous rather than discre
The former situation is simpler than the one we consider
detail, since the partition of information into continuous a
discrete components is not necessary.
3-2
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BINLESS STRATEGIES FOR ESTIMATION OF . . . PHYSICAL REVIEW E 66, 051903 ~2002!
Binless entropy estimates of one-dimensional distributions

Let p(x) be a continuous probability density on the re
line @2`,`#. Our immediate goal is to estimate the differe
tial entropy@25# of p(x), defined as

Hdiff52E
2`

`

p~x!log2 p~x!dx, ~1!

from a finite sample of observationsx1 ,...,xN drawn accord-
ing to p(x).

The differential entropyHdiff characterizes the behavior o
the entropy of discretized versions ofp(x) in the limit
of small bin widthsb, which we denoteHdisc(b). In the limit
of small bin widthsb, the probability that a samplex is
betweenxi and xi1b is approximated bybp(xi). Using
( ibp(xi)51, it follows ~in the limit of small b! that the
differential entropy and the discretized entropyHdisc(b) are
related by

Hdisc~b!'2(
i

bp~xi !log2 bp~xi !

'2 log2 b2(
i

bp~xi !log2 p~xi !

'2 log2 b2E
2`

`

p~x!log2 p~x!dx

5Hdiff2 log2 b,

where thexi are the centers of equally sized bins of widthb.
For information estimates obtained via discretizatio

only this limiting behavior is of interest, since it captures t
greatest amount of detail~as formalized by the data proces
ing theorem@24#!. The final term2 log2 b in the above equa
tion is irrelevant to estimates of information, since the inf
mation estimates are differences of two entropy estima
each obtained with the same bin size. The continuous
proach bypasses this limiting process, and replaces the
ference of discretized entropies with the equivalent diff
ence of differential entropies.

We seek an estimate for the differential entropy@Eq. ~1!#
that depends continuously on the individual observations.
would like to exploit the~assumed! continuous nature ofp,
but to keep the estimation procedure local, so that sensiti
to the shape ofp is preserved. The analysis below should
viewed as heuristic development of the binless estimator.
a rigorous proof, the reader is referred to Kozachenko
Leonenko@19#.

The first step is to change the variable of integration
Eq. ~1! to the cumulative probability densityy, defined by

y5E
2`

x

p~ t !dt.

Under this change of variables,dy5p(x)dx, and Eq.~1!
transforms to
05190
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Hdiff52E
0

1

log2 p~x!dy. ~2!

This equation states that the differential entropy is de
mined by the average of log2 p(x), where the average is
equally weighted with respect to the cumulative probabil
densityy. However, the available data consist only of theN
sample pointsxj , andy is unknown. We estimatey by taking
it to be the function that isexactlythe cumulative probability
distribution of theN observed samples. That is,y is estimated
by a function that is 0 atx52` and has an abrupt step o
size 1/N at each valuexj . Sincey is a step function,dy is a
formal sum ofd functions of weight 1/N at each valuexj .
This provides an approximation of the integral of Eq.~2! by
the sum

Hdiff'2(
j 51

N
1

N
log2 p~xj !. ~3!

Note that thexj are determined by random draws accordi
to p, in contrast to thexi above, which are determined by th
positions of equally spaced bins.

We now estimate log2 p(xj) from the Euclidean distance
betweenxj and its nearest neighbor. The rationale for
estimate of this sort is that in some sense, it is as loca
possible given the available data. We proceed as follows.
q(l) be the probability that, afterN21 other samples have
been drawn according top, the nearest neighbor to a samp
xj is at a distance of leastl. The probability density forl is
thus2dq/dl. As l increases byDl, q(l) decreases accord
ing to the probability of encountering any of theN21
samples in either of two intervals of lengthDl extending on
either side ofxj . The continuity assumption forp means that
within a sufficiently small neighborhood ofxj , we can ap-
proximate p by a locally uniform distribution of density
p(xj ). That is, we can approximate

dq

dl
'22~N21!p~xj !q~l!, ~4!

and consequently~sinceq(0)51),

q~l!'exp@22l~N21!p~xj !#. ~5!

Using Eqs. ~4! and ~5! and the substitutionu52l~N21!
p(xj ),

^ log2 l&5E
0

`

log2~l!S 2
dq

dl Ddl

'E
0

`

log2F u

2~N21!p~xj !
Ge2udu

52 log2@2~N21!p~xj !#2
g

ln~2!
,

where g52*0
`e2v ln vdv, the Euler-Mascheroni constan

~'0.577 215 664 9!. This can be rewritten as

2 log2 p~xj !'^ log2 l&1 log2@2~N21!#1
g

ln~2!
, ~6!
3-3
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JONATHAN D. VICTOR PHYSICAL REVIEW E66, 051903 ~2002!
the desired relationship between log2 p(xj) and the Euclidean
distance to the nearest neighbor. This relationship, when
stituted into Eq.~3!, gives the estimate

Hdiff'
1

N (
j 51

N

log2 l j1 log2@2~N21!#1
g

ln~2!
, ~7!

where l j is the observed distance fromxj to its nearest
neighbor.

Binless entropy estimates of multidimensional distributions

The above strategy readily extends to multidimensio
distributionsp(x), wherex is a point in anr-dimensional
Euclidean space. The differential entropy@Eq. ~1!, inter-
preted as a multidimensional integral# and the discretized
entropy calculated with respect to anr-dimensional bin of
width b are related by

Hdisc~b!'Hdiff2r log2 b. ~8!

The finite sum approximation@Eq. ~3!# remains valid, but
the relationship betweenp(xj ) and the expected distributio
q(l) of Euclidean distances to the nearest neighbor ofxj
must be modified@Eqs. ~4! and ~5!#. This is because the
volume associated with a change in Euclidean distance f
l to l1Dl is the volume of anr-dimensional spherical she
of radiusl and thicknessDl. That is,

dq

dl
'2Srl

r 21~N21!p~xj !q~l!, ~9!

where

Sr5
rp r /2

GS r

2
11D

is the area of a unitr-dimensional spherical surfac
(S152,S252p,S354p,...). Following the same lines a
the one-dimensional analysis above, we find

q~l!'expF2
Srl

r~N21!p~xj !

r G
and

^ log2 l&'
1

r S 2 log2FSr~N21!p~xj !

r G2
g

ln~2! D ,

which, when substituted into Eq.~3!, provides the estimate

Hdiff'
r

N (
j 51

N

log2~l j !1 log2FSr~N21!

r G1
g

ln~2!
. ~10!

This is Eq. ~2! of Kozachenko and Leonenko@19#. It was
shown by these authors to be asymptotically unbiased
consistent, provided thatp obeys certain conditions that con
trol the convergence of integrals for the differential entro
05190
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The strategy of estimating differential entropy fro
nearest-neighbor Euclidean distances is related to the s
egy of estimating fractal dimension from the statistics
nearest-neighbor distances, the third approach discusse
Grassberger@26#. Note, however, that the dimension corr
sponds to the slope of the dependence of log~nearest-
neighbor distance! on log ~number of samples!, while differ-
ential entropy corresponds to the intercept. Thus,
debiasers developed in Ref.@26# for the dimension do not
immediately extend to the present situation, in which t
dimension is a known integer, and entropy is to be estima

Numerical examples: Entropy estimates

The asymptotically unbiased and consistent nature of
binless estimators suggests, but does not guarantee, its u
in practical application to finite data sets. We therefore illu
trate the performance of the binless estimators of Eqs.~7!
and~10! with some numerical examples, focusing on a co
parison with standard estimates based on binning. Figu
considers a one-dimensional Gaussian of unit variance.
upper panels show that the binned estimates approach
correct value asymptotically, provided that the bin width
sufficiently small~i.e., 0.125 or 0.5!. We show the behavior
of two bias corrections for the binned estimates:~i! the bias
correction of Miller @14# and Carlton@13# ~which corre-
sponds@27# to the bias correction for entropy proposed
Treves and Panzeri@15# and is henceforth referred to as th
‘‘classical’’ correction!, and~ii ! the jackknife@16#. The latter
correction tends to result in a somewhat higher value an
smaller error, especially in the small-sample, small bin-wid
regime. The lower panels of Fig. 1 show that for a fix
number of samples, binned estimates~even if debiased! un-
derestimate differential entropy when the bin width is sma
and overestimate differential entropy when the bin width
large. The binless estimate~reproduced in all three uppe
panels! has essentially no bias, as expected from the ana
cal results of Kozachenko and Leonenko@19#. The trade-off
for this lack of bias is that the binless estimates are con
erably less precise than the binned estimates.

Numerical experiments~not shown! revealed similar be-
havior for other one-dimensional distributions, including:
uniform distribution, a one-sided exponential distributio
and a Lorentz distribution. The similarity is remarkable, co
sidering that these distributions differ in whether their su
port is compact, semi-infinite, or infinite; whether the den
ties have discontinuities, and whether the distributions h
finite variance.

Figure 2 compares these estimators for a thr
dimensional Gaussian distribution. The above features
main, but their relative importance has changed. When
size is small~0.5 or less!, the underestimate of differentia
entropy associated with finite sample size has become
severe that hundreds of samples are required to achiev
acceptable estimate. The upward bias in differential entr
due to noninfinitesimal bins has also become severe. T
only a very narrow range of bin widths~ca. 1! will yield an
acceptable estimate. On the other hand, the imprecisio
the binless estimator has increased only slightly. Con
3-4
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FIG. 1. Differential entropy of
a one-dimensional Gaussian di
tribution ~unit variance!, as esti-
mated from a finite sample of dat
via binned and binless ap
proaches. Horizontal line: correc
value, ca. 2.047. Triangles: mea
of binned estimates, corrected vi
the classical method~down tri-
angles! and the jackknife~up tri-
angles!. Open circles: binless esti
mates, calculated from Eq.~7!.
~These estimates do not depend
bin size, but are reproduced acro
bin sizes to facilitate comparison
with the binned estimates.! The
error bars represent the standa
deviations of the estimates. Fort
independent runs for each set o
conditions. All calculations were
carried out in MATLAB version
5.3.1 for Windows.
b
v

tio

itl

will
not

fer-
sian
atio
less
quently, an acceptable estimate of differential entropy can
obtained with 100 or fewer samples. These trends are e
more apparent for a five-dimensional Gaussian distribu
~Fig. 3!.

Since Eq. 10 has a bias correction term that explic
depends on the number of dimensionsr, one might be con-
05190
e
en
n

y

cerned that the performance of the binless estimator
be degraded when the dimensionality of a dataset is
clearcut. This is addressed in Fig. 4, which examines dif
ential entropy estimates for a three-dimensional Gaus
whose variances along its three axes are in the r
1:10:100. The measurable bias associated with the bin
s-

s.
-
-

FIG. 2. Differential entropy of
a three-dimensional Gaussian di
tribution ~unit variance!, estimated
from a finite sample of data via
binned and binless approache
Correct value, ca. 6.141. Ten inde
pendent runs for each set of con
ditions. Display conventions as in
Fig. 1.
3-5
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JONATHAN D. VICTOR PHYSICAL REVIEW E66, 051903 ~2002!
FIG. 3. Differential entropy of a five-dimensional Gaussian distribution~unit variance!, estimated from a finite sample of data via binn
and binless approaches. Correct value, ca. 10.236. Ten independent runs for each set of conditions. Display conventions as in F

FIG. 4. Differential entropy of a three-dimensional Gaussian distribution whose variances along the orthogonal axes are in
1:10:100, estimated from a finite sample of data via binned and binless approaches. Correct value, ca. 6.141. Ten independent ru
set of conditions. Display conventions as in Fig. 1.
051903-6



im

ib
ve
u

10

in
f

l
f
is

-
,

ob
m

o
um
a

t

q
n
tit

ng
ec
to

o
o

tio
c
w

u-
es.

ma-
ter-

of
f

a-

re-
ular
trib-
r-
py

-

e
al
h

of

the

r

in

ach

the
e.
uc-
d

BINLESS STRATEGIES FOR ESTIMATION OF . . . PHYSICAL REVIEW E 66, 051903 ~2002!
estimators is restricted to small sample numbers~,16!, and
is much less than the bias associated with the binned est
tors, even after the latter have been ‘‘debiased.’’

In sum, it appears that the binless estimates of a distr
tion’s differential entropy have significant advantages o
binned estimates, particularly for high-dimensional distrib
tions and when the size of the dataset is in the range
1000.

Information estimates in a Euclidean space

We next consider estimation of information transmitted
the following setting: the input consists of a discrete set oS
symbols a1 ,...,as , presented with probabilitiesq1 ,...,qs .
The resulting outputsx are characterized by conditiona
probability densitiespk(x)5p(xuak) in a Euclidean space o
dimensionr. In this context, the transmitted information
given by ~@24#, Sec. 2.4!

I 5Hdiff 2 (
k51

S

qkHdiff~xuak!, ~11!

whereHdiff is the differential entropy for the~unconditional!
densityp(x), andHdiff(xuak) is the differential entropy for
the conditional densitypk(x)5p(xuak). Substitution of Eq.
~10! into Eq. ~11! yields

I'
r

N (
j 51

N

log2S l j

l j*
D 2 (

k51

S
Nk

N
log2

Nk21

N21
. ~12!

Here Nk is the number of presentations of thekth stimulus
(Nk5qkN), l j is ~as before! the minimum Euclidean dis
tance between the observationxj and any other observation
andl j* is the minimum Euclidean distance between the
servationxj and any other observation elicited by the sa
stimulus. That is, Eq.~12! estimates information from the
ratio between the minimum Euclidean distances between
servations elicited by the same symbol, and the minim
Euclidean distances between observations elicited by
symbols.

Information estimates for spike trains

We now consider how we can adapt this procedure
neural data, in which the outputs~responses! consists of
spike trains. The main problem is that we cannot apply E
~11! and ~12! directly to neural data, since these equatio
assume that the spike trains are represented by quan
lying within a Euclidean space of a particular dimensionr. n
parameters are required to describe a spike train containin
spikes—effectively one for each spike time. Thus, the coll
tion of all spike trains of finite duration can be considered
constitute a set of spaces, one of each dimension~0, 1, 2,...!,
with the spike trains containingn spikes occupying the
n-dimensional space. The binless approach outlined ab
can deal with the distribution of responses within each
these spaces, but it cannot deal with the overall distribu
of responses across these spaces—since the latter is not
acterized by any single dimension. This suggests that
05190
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break the transmitted information into two kinds of contrib
tions: one due to spike counts, and one due to spike tim
We can then use binned estimates to determine the infor
tion carried by spike counts, and binless estimates to de
mine the information carried by spike times.

More formally, we write

I 5I count1 (
n51

`

p~d~x!5n!I timing~n!, ~13!

wherep(d(x)5n) is the probability that a responsex con-
tains exactlyn spikes,I count is the information carried by the
number of spikes elicited by each stimulus, andI timing(n) is
the information carried by the distribution of spike times
all responses containingn spikes. The chain rule property o
information@24# guarantees that the partitioning of inform
tion expressed by Eq.~13! is rigorously correct: information
is unchanged by first considering how many spikes a
sponse contains, and then, conditional on each partic
number of spikes in a response, how those spikes are dis
uted in time. Note that this partitioning of information co
responds precisely to McFadden’s partitioning of the entro
of a point process into ‘‘numerical’’ and ‘‘locational’’ com
ponents@18#.

Unfortunately, estimatingI timing(n) by embedding the
spike trains containingn spikes into ann-dimensional space
becomes impractical whenn is large. Therefore, the abov
strategy must be modified in the following way. A maxim
embedding dimensionD is chosen. Each spike train of lengt
n is then embedded~see below for details! as a point in a
space of dimensionr 5min(n,D). This dimensional reduction
for n.D may lead to a downward bias in the estimate
I timing(n) ~by the data processing theorem@24#!, but as the
numerical results will show~Fig. 6 and following!, this
downward bias is tolerable. Thus, given a choice of
maximal embedding dimensionD, we estimate

I timing~n!5
r

N~n! (
j 51

N~n!

log2S l j

l j*
D

2 (
k51

S
N~n,ak!

N~n!
log2

N~n,ak!21

N~n!21
, ~14!

where r 5min(n,D) is the embedding dimension fo
n-element spike trains, thej summation is over allN(n)
spike trains containing exactlyn spikes, andN(n,ak) is the
number of trials in which a stimulusak elicits a response
containingn spikes.l j andl j* are the minimum Euclidean
distances betweenxj and all other responses that conta
exactly n spikes (l j ) or those that contain exactlyn spikes
and are also elicited by the same stimulus asxj (l j* ). Note
that the embedding process utilizes a single space for e
dimension less than or equal to (D21), but multiple spaces
of dimensionD ~one for each value ofn>D). Each spike
train is embedded into exactly one of these spaces, and
calculation of Eq.~14! is performed separately in each spac
Other than the downward bias due to the dimensional red
tion for n.D, it follows from the results of Kozachenko an
3-7
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JONATHAN D. VICTOR PHYSICAL REVIEW E66, 051903 ~2002!
Leonenko@19# that the estimate of Eq.~14! is asymptotically
unbiased and consistent.~As noted above, the results o
Kozachenko and Leonenko@19# posit certain integrability
conditions on the distributions of the embedded spike tra
These conditions are quite weak, and are guaranteed to
if each multidimensional distribution of spike times
bounded and of finite support.!

Two quantities in Eq.~13! remain to be estimated
p(d(x)5n), the probability that the number of spikes in
response is equal ton, can be estimated asN(n)/N. I countcan
be estimated from a plug-in estimate based onN(n,ak), the
number of trials in which a stimulusak elicits a response
containingn spikes:

I count'2 (
n50

nmax

(
k51

S
N~n,ak!

N
log2 N~n,ak!

1 (
n50

nmax N~n!

N
log2 N~n!1 (

k51

S

qk log2 qk1I bias,

~15!

where nmax is the maximum number of spikes in any r
sponse. The bias in the estimate ofI count can be estimated by
standard methods for discrete entropy calculations. In
numerical examples, we will use two choices: the class
correction for entropy estimates@13–15#

I bias'2
~S21!~nmax21!

2N ln 2
~16!

and the jackknife debiaser@16#.

The embedding

To implement the above plan, we need to embed e
n-element spike train as a point in a Euclidean space of
mensionr 5min(n,D). There are many reasonable choic
for how to do this. However, the form of Eqs.~12! and~14!
indicates that the estimated information will be insensitive
certain aspects of these choices. The information estim
depend only on the ratio of Euclidean distances to nea
neighbors. Thus, different embeddings related by a cont
ous distortion will lead to substantially the same estima
provided that there are sufficiently many data points so
the distortion is relatively constant within the neare
neighbor radius of each sample. This statement is noth
more than a reminder that information estimates are o
likely to be valid if one has a sufficient amount of data
delineate the main features of the response probability di
bution.

On the other hand, both common sense and the nume
examples of entropy calculations~Fig. 2 vs Fig. 4! suggest
that the estimate is likely to be more efficient if each of t
dimensions are relatively independent, and each contrib
comparably to the overall scatter of the points. This mo
vates the following strategy, which we will use in the n
merical examples that follow. First, the list of all spike tim
tm ~in all responses! is examined. A monotonic time-warpin
transformation@28,29# t(t) is applied so that the transforme
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spike timestm5t(tm) are approximately equally spaced
the interval@21,1#. This can be accomplished by ordering a
spike times serially, and assigning thej th spike to the time

t j52112
j 2 1

2

M
, ~17!

whereM is the total number of spikes. A set of spike tim
that are identical up to measurement precision are repla
by the mean of the values that would otherwise be assig
by the serial ordering and Eq.~17!. The purpose of this trans
formation is to allow the creation of approximately indepe
dent coordinates via standard orthogonal polynomials.

The embedding coordinates are based on the Lege
polynomials Ph , which are orthogonal on@21,1#. In the
usual normalization,

1

2 E21

1

Ph~t!Pk~t!dt5
1

2h11
dh,k . ~18!

The hth embedding coordinatech uses thehth Legendre
polynomial to map a spike trainxj ~containingn spikes at
times t j i

,...,t j n
) into the value

ch~xj !5A2h11(
k51

n

Ph~tk!. ~19!

Together, the firstr Legendre polynomials yield an embed
ding of a spike trainxj into a vector space of dimensionr,
namely, the point specified by ther-tuple c1(x1),...,cr(xj ).
By virtue of the chosen normalization, if the spike tim
t j i

,...,t j n
within each spike trainxj were drawn at random

from the pool of spike times, the mean-squared value of
hth coordinate of a spike train withn spikes would ben,
because the transformed spike timestm are approximately
equally spaced in the interval@21,1#. Moreover ~again as-
suming that spike times were drawn at random!, coordinate
values would be uncorrelated. This embedding thus fulfi
the goal of creating approximately independent dimensi
of approximately equal weight~if the spike times were inde
pendently drawn!. However, we do not require the spik
times or interspike intervals to be independent. If they
not independent, the above embedding nevertheless suf
to apply Eq.~14!. The estimation procedure remains vali
but may suffer a loss of efficiency. Despite the possible l
of efficiency, the numerical examples of Figs. 8 and 9 sh
that the present approach retains its advantages when i
spike intervals are strongly correlated.

We emphasize that the above embedding is based on
transformed spike timestm . Thus, the resulting information
estimates will not depend on the actual spike times, but o
on their order~within and across spike trains!. At first this
might seem counterintuitive. However, the warping is, af
all, an invertible topological transformation on the spi
trains, which therefore cannot affect the information conte
As a computational device, forcing the spike density to
uniform in the transformed time helps to make the emb
ding coordinates approximately independent, and thus ma
the information estimate more robust.
3-8
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BINLESS STRATEGIES FOR ESTIMATION OF . . . PHYSICAL REVIEW E 66, 051903 ~2002!
As indicated above, the entire estimation procedure
parametric in a choice of a maximal embedding dimens
D. Too small a choice forD will downwardly bias informa-
tion estimates since it leads to a loss of detail about
sponses forn.D. On the other hand, too large a choice ofD
will also lead to a downward bias of the information es
mate, but for a different reason: the asymptotic regime of
binless estimator is not reached. When the dimension of
embedding space is large, most of the embedded spike
close to the boundary of the region of data. For points n
the boundary, only a portion of the surrounding solid an
can possibly contain a nearest neighbor. The da
independent termSr of Eq. ~9! is too large to take into ac
count this edge effect, and consequently, differential entr
estimates@such as Eq.~10!# are upwardly biased. This edg
effect is larger for the conditional~within-stimulus! estimate
of differential entropyHdiff (xuak) than for the unconditiona
across-stimulus estimate,Hdiff , since there are fewer dat
points in the former estimate. Consequently, the ultimate
fect on the information estimate@Eq. ~11!# is a downward
bias before the asymptotic regime is reached.

Thus, since we anticipate downward biases both for la
D and for smallD, the systematic way to proceed is to pe
form the above calculations parametrically inD, and to take
the maximal value of the resulting information estimates
taken as the final estimate ofI. The examples below~Figs.
6–9! show that this strategy is indeed practical, and t
information estimates typically reach their maximal value
D52, 3, or 4. We also note that terms in Eq.~14! may be
undefined either because there are two spike trains tha
embedded at precisely the same point~and thus, the neares
neighbor has a Euclidean distance of 0!, or because there ar
no nearest neighbors. These eventualities can be handle
described in the Appendix.

Numerical examples: Information estimates

We illustrate the above approach with some calculati
based on simulated data. The first simulation~Figs. 5 and 6!
considers responses to five stimuli that produce Pois
spike trains differing in mean rate. Figure 5~a! illustrates
information estimates obtained via the binless proced
@Eqs. ~13!–~15!#. With increasing sample size, the debias
contribution from spike count alone,I count @Eq. ~15!#, con-
verges to the correct value. Prior to convergence, the cla
cal bias estimate~down triangles! underestimates the corre
value, while the jackknife bias estimate~up triangles! over-
estimates the correct value.

In this simple simulation consisting of Poisson data,
contribution of spike timing~and thus,I timing) to the infor-
mation is zero. Nevertheless it is useful to assess the bias
scatter of estimates ofI timing @Eq. ~14!#. As seen in Figure
5~a!, the estimates ofI timing indeed add considerable scatte
The classical debiaser~squares! typically underestimates th
correct value, while the jackknife debiaser~diamonds! typi-
cally overestimates the correct value.

Figure 5~a! compares these information estimates to th
obtained by estimatingI timing in a binned fashion from the
embedding of Fig. 5~a!. The estimates have greater precisi
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than those of the binless strategy. However, they have s
stantially less accuracy in the 32–256 sample range for
classical debiaser, and across the entire range for the j
knife debiaser. Over most of the range of sample number,
improved accuracy of the binless estimates@Fig. 5~a!# com-
pared to the binned estimates@Fig. 5~b!# more than compen-
sates for the inferior precision of the binless approach.

Figure 6 considers a wider set of information estima
for this simulation. The first three rows extend the compa
sons of Fig. 5 to a range of maximal embedding dimensi
D51, 2, and 3. The choice ofD has relatively little effect on
the binless information estimates. However, for binned e

FIG. 5. ~a! Information estimates from simulated Poisson da
using Eqs.~13!–~15!, with a maximal embedding dimensionD of 2.
Simulated spike trains had duration 1 s and mean rates 2, 4, 6,
and 10 Hz.~This is identical to the simulation of Figs. 4A–D o
Victor and Purpura@17#.! 2048 such spike trains were generated
response to each stimulus, and we estimated information f
datasets consisting of 8, 16, 32,..., 1024 examples of each resp
Solid horizontal line: correct value. Triangles: contribution fro
spike count alone,I count @Eq. ~15!# as corrected by the classical bia
estimate~down triangles! and the jackknife bias estimate~up tri-
angles!. Lines marked by squares and diamonds indicate total in
mation estimate@Eq. ~13!#, adjusted by the classical and jackkni
bias estimates, respectively. There are two traces marked by
set of symbols, corresponding to the strategy for handling term
Eq. ~14! that are undefined due to singletons~see the Appendix!.
The upper trace~with error bars extending only upwards! corre-
sponds to estimates generated by considering singletons maxim
informative. The lower trace~with error bars extending only down
wards! corresponds to estimates generated by considering sin
tons maximally uninformative. Error bars represent one stand
deviation of the range of values calculated in multiple independ
simulations, and many error bars overlap.~b! Estimates of informa-
tion derived from binning the embedded spike trains to obt
I timing , rather than Eq.~14!. Down and up triangles:I count with the
classical and jackknife bias corrections, as in Fig. 5~a!. Squares and
diamonds: total information estimates, corrected by the two kind
bias estimates applied to the binned data. Since singletons ar
treated as special cases, each kind of bias estimate leads to onl
estimate~plotted with a double-sided error bar!, rather than the
upper and lower estimates of Fig. 5~a!. The embedding dimension
D is 2 @as in Fig. 5~a!#; the bin width is 1. Here and in subseque
figures, the numbers along each abscissa refer to the numb
samplesN that are used in the information estimates.
3-9
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JONATHAN D. VICTOR PHYSICAL REVIEW E66, 051903 ~2002!
FIG. 6. A broader exploration of information estimates for the simulation of Fig. 5. First three rows: comparisons of infor
estimates obtained with the unbinned estimator and maximal embedding dimensionD51, 2, and 3@first column, displays conventions as i
Fig. 5~a!# or with binned estimators@remaining columns, display conventions as in Fig. 5~b!#. Fourth row: information estimates obtained v
standard time binning of the raw spike trains; bin widths 0.125, 0.25, 0.5, and 1 s. The analysis based on 1 s bins reflects spike co
since the spike trains are 1 s induration. Bias corrections and range of estimators displayed as in Fig. 5~b!; note that estimates are large
off-scale for a bin width of 0.125 s. Fifth row: information estimates obtained via a binless approach based on metric-space embedd@17#.
The spike count contribution~up and down triangles, for the two kinds of bias corrections, here superimposed! is calculated from the ‘‘spike
count’’ metric of @17#. The total information~diamonds and squares, for the two kinds of bias corrections, here superimposed! is calculated
from the optimum ‘‘spike time’’ metric of@17#. The two graphs reflect two choices of the clustering exponentz, and calculations are limited
to sample sizes of 256 or less because of computational constraints. For further details, see text and Victor and Purpura@17#. Bias corrections
and range of estimators displayed as in Fig. 5~b!.
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mates,D and bin width have large effects. As bin widt
decreases, the upward bias of the jackknife estimate beco
large. This effect is magnified at higher maximal embedd
dimensionsD, so much so that the estimate is off-scale
much of the range of sample size.

The fourth row of Fig. 6 shows information estimat
calculated by direct binning. That is, rather than embedd
spike trains into a vector space by a procedure such as
~19! and performing estimates~either binned or unbinned! on
the embedded data, each response is represented as
quence of integers corresponding to the number of sp
that occur in each of several time bins. This is essentially
‘‘direct’’ method of Stronget al. @12#. Precision is better than
for the binned estimates derived from embedding~top three
rows, second through fifth columns!, but accuracy is dra-
matically worse, especially for time bins of 0.25 s or less

The final row in Fig. 6 shows information estimates c
culated via another unbinned approach, the metric-sp
method of Victor and Purpura@17#. In this approach, spike
trains are embedded in a metric space via a range of diffe
candidate ‘‘spike time metrics,’’ parametrized by a quantityq
that indicates the relative importance of spike timing a
spike count. Clustering~parametrized by an averaging exp
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nentz! of responses is performed directly in the metric spa
The information estimate is based on how faithfully the
sponse clusters reflect the original stimuli, at the optim
value of q. As shown here, the estimators have a precis
that is comparable to those derived from binning, but,
previously noted@17#, there is a modest downward bias, ev
for large sample sizes.

The simulation of Figs. 5 and 6 shows that binned entro
estimates, even when debiased, depend strongly on max
embedding dimensionD and bin width. Since these simula
tions are based on Poisson trains~for which there is no con-
tribution of spike timingper se!, an accurate estimate o
information can be obtained by choosing a large bin wid
For non-Poisson spike trains, the contribution of spike tim
will only be evident when the bins are fine enough to capt
the informative temporal structure of the spike train. A
a consequence, it may be difficult to choose a bin sm
enough to capture the temporal structure, and large enoug
eliminate bias due to limited data size. In this regime,
binless estimators are expected to have a considerable ad
tage. This is illustrated in Fig. 7.

Figure 7 shows the analysis of simulated spike trains g
erated by a gamma process whose coefficient of variatio
3-10
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FIG. 7. Information estimates
for simulated data consisting o
highly regular spike trains. Spike
trains are generated by a gamm
process of order 64~and thus the
interspike intervals have a coeffi
cient of variation of 0.125!. The
mean firing rates and other detai
are otherwise identical to the
simulation of Figs. 5 and 6.~This
is identical to the simulation of
Figs. 4E–H of Victor and Purpura
@17#.! The solid line~no symbols!
indicates the information esti
mated by the binless approac
with a sample size of 4096 an
D54 ~the value ofD in $1,...,6%
that provided the maximum infor-
mation!. Display conventions oth-
erwise as in Fig. 6.
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0.125. Because firing rates are more regular, the contribu
of spike counts to information is greater than in Fig. 5. Mo
over, the regularity of the spike trainsper seshould provide
an additional but modest contribution to the informatio
This is because~given the extreme regularity of the spik
trains! even a single short interval is unlikely at the low
firing rates. This increment,'0.2 bits, is evident for the es
timates based onD52 or 3, both for the binned and un
binned estimates.~Failure to identify this increment informa
tion for D51 is consistent with the fact that the timin
contribution reflects information carried by pairs of spike!
Note that for the binned estimates based on embedding,
incremental information can only be seen for a bin width le
than or equal to 2. That is, there is a very narrow range
bins ~ca. 2! that is both large enough to avoid a large bias
Poisson data~Fig. 6!, and small enough to capture the add
tional information in the regularity of the spike trains~Fig.
7!. For information calculated by direct binning, the situati
is worse~fourth row of Fig. 7!. Only a time bin width less
than or equal to 0.25 s begins to capture the information
the regularity of the spike trains, but these time bins lead
unacceptable bias for Poisson data~Fig. 6!. The spike metric
estimators~last row in Fig. 7! provide an acceptable est
mate, but they are negatively biased for the Poisson tr
~Fig. 6!.

Figure 8 considers responses that are inhomogen
Poisson processes with identical mean firing rates. Co
quently, information is carried only by spike timing. Fo
D51, neither the binless estimator nor the binned estima
~based on embedded spike trains! captures the full informa-
tion. This is consistent with the fact that the response ge
etry is that of a circle~of phases!, and any one-dimensiona
projection entails ambiguity. WithD>2, the binless estima
tors closely approximate their asymptotic value, even fo
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sample size of less than or equal to 64. The binned estima
for D>2 straddle this asymptotic value widely, but do n
approach it very closely, even for 1024 samples of each
sponse type. Direct time binning~next to last row! results in
estimates that are either downwardly biased because the
size is too large~bin width greater than or equal to 0.5 s!, or
far from the asymptotic value because of limited data~bin
width less than or equal to 0.25 s!. Metric-space estimate
~last row! converge more rapidly but have some downwa
bias.

Figure 9 considers inhomogeneous Poisson spike tr
that differ in mean rate and in their transient firing envelop
Thus, information is carried both in the spike counts and
spike timing, and is not uniformly distributed in time. As
typical of cortical responses@4#, the systematic difference
between the times of the onsets of the transients is com
rable to the typical interspike interval. This represents a p
ticularly severe challenge for binned approaches. Other t
a nonzero contribution ofI count, the behavior of the estima
tors is generally similar to that of Fig. 8. Binless estima
appear to achieve a maximum withD53 or 4 and asymptote
with a sample size of less than or equal to 64, while
binned estimators are highly sensitive to the choice of
size, and have not reached asymptotic behavior even wi
sample size of 1024.

DISCUSSION

The hybrid topology of spike trains

Entropy and information are usually defined and es
mated for probability distributions on a discrete set or on
Euclidean space. The space of spike trains has a dis
hybrid topology@18#, and this has implications for the est
mation of information. Spike trains have a discrete charac
3-11
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FIG. 8. Information estimates
for simulated data consisting o
sinusoidally modulated inhomo
geneous Poisson trains~eight
equally spaced phases, mean ra
10 impulses/s, modulation depth
impulses/s, duration 1 s!. The
solid line ~no symbols! indicates
the information estimated by the
binless approach with a sampl
size of 4096 andD53 ~the value
of D in $1,..., 6% that provided the
maximum information!. First four
rows: estimates based on embe
ding in dimensions 1, 2, 3, and 4
followed by the binless estimato
or binned estimators of a range o
bin widths. Fifth row: estimates
based on direct binning. Sixth
row: estimates based on spik
metrics. Display conventions oth
erwise as in Fig. 6.
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because the number of spikes in any spike train must b
integer. Spike trains also have a continuous character, ow
to the continuous nature of time: two spike trains may
considered to be ‘‘close’’ to each other if they have the sa
number of spikes, and the corresponding spikes occu
nearly identical times. Reducing a spike train to a discr
series of integers~via binning! destroys this topology, in tha
small shifts in the time of a spike~that cause a spike to cros
a bin boundary! result in as much of a change as moving
spike to an arbitrarily distant bin. One of the appeals of
formation measures is that they are independent of smo
invertible, transformations of the underlying space. Howev
they arenot independent of transformations that destroy
topology. Thus, since formal information is only preserv
when the topology of the response space is preserved
proaches that ignore the continuous aspects of the topo
might not even converge to the correct answer. The pre
approach both respects and exploits this natural hybrid to
ogy of spike trains, and is thus more likely to be robust a
efficient than procedures that ignore it.

The numerical examples presented above indicate
these theoretical considerations are highly relevant for
typical size of experimental datasets~Figs. 5–9!. Of the es-
timators considered, the binless approach provides the m
robust and rapidly converging estimators for information
spike trains. Direct binning of the spike trains provides t
least useful estimators. Estimators that use an embed
that reflects the hybrid topology but then calculate inform
tion by binning the embedded data have an intermed
level of performance. The benefit of exploiting the under
ing topology of a distribution applies not only to informatio
calculations, but also to simple estimates of entropy~Figs.
1–4!.
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Variations

Within the framework of binless estimators applied
spike trains, there are a number of reasonable variation
the particular implementation proposed here. The time wa
ing transformation@Eq. ~17!# is not an essential step: it im
proves convergence but entails a modest penalty in com
tation time and the scatter of the information estimates.

The choice of embedding functions~here, the Legendre
polynomials! is a generic one, not necessarily the most a
propriate for all situations. Fourier coefficients might be p
ticularly appropriate for periodic stimuli and Laguerre pol
nomials might be particularly appropriate for responses t
have initial transients. Principal components are another
sonable choice. While stratification by spike count is critic
in deriving a rigorously valid estimator, this step is not
prerequisite for estimators that have practical utility. For e
ample, one could lump together all spike trains regardles
count, and simply add an embedding coordinate equal to
spike count, ignoring the fact that the distribution is discre
A strategy of this sort expresses the notion that spike tra
that differ in just one spike should be considered ‘‘simila
although each spike is a discrete event. If all spike tra
contain sufficient spikes, one anticipates only small bia
due to this discretization, and a gain in the precision of
estimator since all spike trains are pooled. Numerical stud
suggest that this regime is reached once there are thre
four spikes in each train. Hybrid schemes based on lump
together spike trains once the spike count exceeds some
terion may also fill a practical niche.

The basic binless information estimate@Eq. ~12!# and the
entropy estimate@Eq. ~10!# that underlies it are based on th
Euclidean distance to the nearest neighbor. Analogous
mators can be constructed based onkth-nearest-neighbor dis
3-12
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FIG. 9. Information estimates
for simulated data consisting o
transiently modulated Poisso
trains. Each of the four stimuli
elicit responses with a basal firin
rate of 10 impulses/s and an expo
nential transient. The onsets of th
transients are at 0.10, 0.15, 0.2
and 0.25 s; the heights of the tran
sients are 128, 48, 16, and
impulses/s, and their time con
stants are 1

16,
1
8,

1
4, and 1

2 s ~The
larger responses occur earlier an
decay more rapidly.! The solid
line ~no symbols! indicates the in-
formation estimated by the binles
approach with a sample size o
4096 andD54 ~the value ofD in
$1,..., 6% that provided the maxi-
mum information!. Display con-
ventions otherwise as in Fig. 8.
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tances@25#. These have been studied in detail, but the ex
result of Kozachenko and Leonenko@19# was not demon-
strated beyond dimension 1@30#. Numerical studies~not
shown! suggest that this modification generally leads to
timates that converge less rapidly as a function of the num
of samples, but have a somewhat lower variance. Since
strategy would also need to handle many more special c
than just the ‘‘singleton’’ situation~see the Appendix!, it is
unlikely that it would provide a significant practical adva
tage.

Comparison to other approaches

The proposed approach applies to neural responses of
ited duration, elicited by single stimuli. Another typical e
perimental situation is that of prolonged responses elic
by rapid presentation of multiple stimuli~typically in a pseu-
dorandom sequence!. In those situations, existing method
~the reconstruction method of Bialeket al. @21#, and the di-
rect method of Stronget al. @12# are clearly appropriate. Th
rapid sequential presentation of stimuli in the latter appro
acts to destroy whatever temporal structure might be ge
ated by the neural response to a single transiently prese
stimulus. Thus, it makes sense that bin-based methods w
well, and the topology of the response space is less cruc

The goals of these two kinds of experiments are differe
In the case considered here, the intent is to determine
faithfully a neuron can transmit information about a partic
lar stimulus set considered relevant to the neuron’s func
~such as a set of gratings of various contrasts!. In the pseu-
dorandom sequence approach, the intent is to determine
maximal amount of information that the neuron can transm

We previously introduced@17# another binless approac
based on a metric-space embedding. Similar to the pre
approach, the metric-space approach explicitly considers
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topology of spike trains. Also, it is designed for the limite
duration situation and not to the pseudorandom seque
situation. As shown here~Figs. 6–9!, the spike metric
method converges at least as rapidly as the present me
but is somewhat downwardly biased. These approaches
somewhat different goals. By virtue of the work of Koz
chenko and Leonenko@19#, the present method is demonstr
bly unbiased, and, with sufficient data, will converge to t
amount of information present. However, it provides litt
insight into how this information is carried. In contrast, th
metric-space method is based on comparing various fam
of biologically motivated~but stereotyped! metrics. Thus, it
is capable of determining which aspects of a spike train
informative, but there is no guarantee that it will extract t
maximal amount of information that is present.

Extensions

Although we have focused on the estimation of inform
tion carried by a single neuron’s spike trains elicited by
discrete set of stimuli, the proposed approach is not limi
to this setting. For example, if the stimulia are drawn from
a continuous distribution, Eq.~11! can be replaced with

I 5Hdiff~a!1Hdiff~x!2Hdiff~a,x!, ~20!

whereHdiff(a,x) is the differential entropy of the joint dis
tribution of a andx, andHdiff(a) andHdiff(x) are the differ-
ential entropies of the marginal distributions ofa andx, re-
spectively. Binless estimators forHdiff(a,x) along the lines
of Eqs.~12! and~14! can be constructed in the product spa
of the domain ofa and the embedding ofn-element spike
trains, and binless estimators for the marginal entrop
Hdiff(a) andHdiff(x) follow from the projection of this prod-
uct space onto the domain ofa and the spike train embed
3-13
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ding. The key quantities in this estimator are the ratio of
Euclidean nearest-neigbor distances in the product spac
the Euclidean nearest-neighbor distances in each of the
projections.

It is also straightforward to extend this approach
multineuronal responses, at least in principle. As in
single-neuron case, there is a contributionI count due to spike
counts alone, but this stratification would need to be p
formed independently for the spike count associated w
each of them neurons. Each neuron’s spike trains are th
independently embedded. Within each such response su
the estimate~14! can then be used to determine the ad
tional contribution of I timing . Since there would be man
response subsets~one for eachm-tuple!, it might be useful
~though not rigorously justifiable! to lump together subset
with similar m-tuples.

Finally, it is straightforward to apply this approach to r
sponses that are continuous functions of time. For such
sets, the stratification stage is superfluous, and the esti
~12! can be used directly, once an embedding of the data
a low-dimensional space is accomplished. Such an em
ding could be accomplished in several ways, including
thogonal functions or principal components.

APPENDIX

Two implementation details

In a practical implementation, undefined terms may ar
in Eq. ~14!, the estimate ofI timing(n), via two routes: ‘‘zero
distances’’ and ‘‘singletons.’’ A Euclidean distance of ze
between two spike trains can arise either because of fi
measurement accuracy of the spike times, or because
embedding procedure happens to map distinct spike train
the same point. Another problem is that some stimuli m
elicit only one spike train containingn spikes. These ‘‘single-
ton’’ spike trains will have no nearest neighbors within th
stimulus class from which to calculatel* in Eq. ~14!. We
now describe how we deal with these eventualities.

To deal with ‘‘zero distances,’’ the spike trains containin
exactlyn spikes that are unique~i.e., at a nonzero Euclidea
distance from all other spike trains! are placed into a setCn .
The remaining spike trains, each of which is at a distance
zero from at least one spike train, are grouped into maxi
disjoint subsetsZn,1 , Zn,2 ,...,Zn,b(n) of spike trains, with
each of these subsets containing spike trains at a Euclid
distance of zero from each other. That is,Cn contains the
spike trains that are all distinct while eachZn,m is a set of
spike trains that appear to be identical. InformationI timing(n)
related to the timing of spikes within then-spike trains can
now be subdivided into a discrete component, correspond
to the partition of spike trains into disjoint setsCn , Zn,1 ,
Zn,2 ,...,Zn,b(n) , and a continuous component, correspond
to distinctions within each of these subsets. However, si
spikes within the subsetsZn,1 , Zn,2 ,...,Zn,b(n) all appear
identical, the only continuous contribution to informatio
comes fromCn . In sum,

I timing~n!5I partition~n!1
N~xPCn!

N~n!
I continuous~n!, ~21!
05190
e
to
o

e

r-
h
n
et,

-

ta
ate
to
d-
-

e

te
the
to
y

of
al

an

g

g
e

whereI partition is the information associated with the discre
partitioning of n-spike trains into the disjoint subsetsCn ,
Zn,1 , Zn,2 ,...,Zn,b(n) , I continuous(n) is the binless estimate
@Eq. ~14!# of transmitted information restricted ton-spike
trains within the setCn , and N(xPCn) is the number of
spike trains inCn . @If no spike trains are at a distance o
zero from each other, then onlyCn is nonempty, and
I timing(n)5I continuous(n) and I partition(n)50.]

With Cn written as Zn,0 for notational convenience
I partition(n) can be estimated by a plug-in estimate

I partition'2 (
m50

b~n!

(
k51

S
N~xPZn,m ,ak!

N~n!
log2 N~xPZn,m ,ak!

1 (
m50

b~n!
N~xPZn,m!

N~n!
log2 N~xPZn,m!

1 (
k51

S
N~n,ak!

N~n!
log2

N~n,ak!

N~n!
1I partition,basis, ~22!

where N(xPZn,m ,ak) is the number of observations of
spike train inZn,m elicited by a stimulusak . I partition,biasis the
bias estimate for this discrete partitioning. Since there
b(n)11 response categoriesCn , Zn,1 , Zn,2 ,...,Zn,b(n) , the
classical estimate@analogous to Eq.~16!# for this bias is

I partition,bias'2
@s~n!21#b~n!

2N~n!ln 2
, ~23!

wheres(n) is the number of stimuli that elicit spike train
with n spikes.

The strategy for dealing with singletons builds on t
above idea. Singletons arise when one or more spike tra
sayxj i

,...,xj u
, are the sole examples inCn of the responses

to their respective stimuliak( j i )
, ...,ak( j u) . In this case, the

nearest-neighbor distancel j* from eachxj to another spike
train elicited by the same stimulus is undefined. This ev
tuality is a direct consequence of having a limited amoun
data, so our strategy is based on considering two way
extrapolating to what the dataset might plausibly consist
had additional data been available. One extreme is that a
tional observations of responses to each stimulusak( j i )

would
only yield responses that coincide with the observed sing
ton xj i

. In this case, eachxj i
should be considered to const

tute a singleton set along with the aboveZn,m . I continuousis
then recomputed according to Eq.~14! with the u singletons
removed fromCn , andI timing(n) is then recomputed accord
ing to Eqs.~21!–~23!, with the list of zero-distance setsZ
used in the calculation ofI partition augmented by theu single-
tons $xj i

%. The other extreme is that additional observatio

would indicate that each of theu singleton responses,xj i
is

completely uninformative. In this case,I timing is then recom-
puted with the singletons removed fromCn , and
N(xPCn) is reduced byu in Eqs.~21! and~22!, but the list
of zero-distance sets is left unchanged. With reasonably la
datasets, the two extremes yield very similar values
I timing(n), as the numerical examples have shown.
3-14
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A chain rule for bias estimates

To deal with the eventualities of ‘‘zero spikes’’ an
‘‘singletons,’’ the partitioning of spike trains according t
spike countn is followed by a second partitioning into th
subsetsZn,m . Both stages of partitioning contribute a di
crete component to the overall information. The contrib
tion of the second stage contains a separate compon
I partition(n), corresponding to each number of spikesn. The
chain rule for information@24# implies that it is equivalent to
add the information associated with each of these two sta
or to consider the entire partitioning as a single step
simple counting argument shows that the chain rule also
tends to bias estimates, either via the classical bias correc
W
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re

d

C

an

d

05190
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or via the jackknife. That is, the bias estimate does not
pend on whether the bias is estimated at each of the
stages and then added~as we have done here!, or by consid-
ering the two stages of partitioning as a single step.

ACKNOWLEDGMENTS

This work was presented in part at the 2001 meeting
the Society for Neuroscience, and was supported by N
NEI EY9314. The author thanks Bruce Knight, Pet
Latham, Partha Mitra, Rodrigo Quian Quiroga, Peter Gra
berger, Satish Iyengar, and especially Liam Paninski
helpful discussions.
nf.

D.

.

@1# F. Rieke, D. Warland, R. R. de Ruyter van Steveninck, and
Bialek, Spikes: Exploring the Neural Code~MIT, Cambridge,
MA, 1997!.
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